If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+14x+1=0
a = 25; b = 14; c = +1;
Δ = b2-4ac
Δ = 142-4·25·1
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{6}}{2*25}=\frac{-14-4\sqrt{6}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{6}}{2*25}=\frac{-14+4\sqrt{6}}{50} $
| 4x+5-11=3x-2 | | a2=48+6a | | 5x+5-4x=15-21= | | 6-(2n-8)=7-3n | | 10*2^5x+1=27 | | 3y-4*4*y=26 | | 2v^2+13v+37-(v+7)^2=0 | | 3(2x-1)+4x=25 | | 6g=2.4 | | 6(c+8)=5c-4 | | 5g+g=54 | | 2p=p+8 | | 3x-12=3x-6x | | (x-1/5)=3 | | |x|+13=20 | | 16f=15f-13= | | F(x)=2x^2+14x | | 5(r-1)-4R=-5+7 | | T(n)=2T(n-1)+5^n | | (13+x)/2=11 | | -(5/x+3)=-(3/2x+6)+2 | | 8(-7x-6)=6x+14 | | b+b+2=22 | | 7y+4=46-13y | | |6x-6|=-5 | | 7y+4=46+13y | | ((4400/q^2)/(q^2))+1000=20 | | F(x)=x-x-7 | | (2/x-3)+(1/x-1)=(5/x-1)-(2/x-2) | | -4(x+5)+2=-6(x+7) | | 3/x+5/x=-4 | | X^2+y^2-2×+4y=0 |